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Abstract

Many practical adaptive feedforward systems are overpa.rarnetrized and for this reason will
nc)t satisfy persistent excitation (PE) conditions. For these systems, a weaker PE condition
is proposed under which it is shown that the tracking error (the error between the desired
and estimated outputs) converges exponentially. Bounds are given on the exponential rate
of convergence useful for systematic optimization and design purposes. Interestingly, it is
also shown that some (but nci all) of the robustness properties associated with full PE are
retained under the weakened PE condition,

1 Introduction

In 1980, Bitmead and Anderson [6] proved that parameter convergence is exponential  when
persistent excitation (PE) conditions are satisfied in the adaptive gradient algorithm. Per-
sistent excitation (PE) conditions are also important for ensuring robustness in a large class
of adaptive systems.

Unfortunately, many practical adaptive systems are overpam.metrized and cannot satisfy
a full PE condition. Hence it is of interest to examine more closely what can be attained
with only limited excitation. Rather than consider a full PE condition (defined by positive
definiteness of the auto correlation matrix), this paper considers a weakened PE condition
defined by positive definiteness of a certain “confluence” matrix.

Compared to full PE, the weakened PE condition leads to several interesting conse-
quences:

1. the aclaptive  system is input-output identicd  to a repararnetrized adaptive system
which is full PE, but in a smaller number of parameters.
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lMail  Stop 198-326, bayard@bert2.jpl.  nasa.gov, Tel: (818) 354-8208, FAX: (818) 393-3444

1



2. it recovers exponential convergence of the tracking error, but not the parameter error.
The tracking error convergence rate is degraded by the condition number of the
confluence matrix, analogous to results for the full PE case where exponential rate
degrades with the condition number of the autocorrelation  matrix.

3. it retains some (but not all) of the robustness properties associated with the full PE
case, such as boundedness to bounded disturbances.

These results extend an earlier paper [2] which required that the regressor be peri-
odic. The new confluence matrix condition is much weaker, requiring only that regressor
is linearly related to a PE regressor of lower dimension.

The notion of having exponential tracking error convergence without parameter con-
vergence is somewhat unusual, but not completely without precedence in the literature,
Using an approximate linear analysis, Glover  [7] indicated as early as 1977 that exponen-
tial convergence of the tracking error is possible in the adaptive gradient algorithm with an
overparametrized tap delay line regressor, and sinusoidal excitation, without any conditions
on parameter convergence. More recently, Johansson [9] used a complete end-to-end Lya-
punov analysis to demonstrate exponential tracking error convergence (to a bounded set)
for a model reference adaptive control (MRAC) algorithm without persistent excitation or
parameter convergence. The present research is motivated by these earlier efforts, and in
principle can be interpreted as an extension of Glover’s work to a much broader class of
regressors and adaptive feedforward algorithms.

A brief background is given in Section 2, where the confluence matrix is defined. The
main results given in Section 3 show that if the confluence matrix is positive definite the
adaptive feedforwzu-d  operator ?t from error e to estimate ~ is input-output identical to an
adaptive system with a reduced PE regressor. This is shown in Section 4 to imply that
tracking error convergence will be exponential for a large class of overparametrized adaptive
feedforward systems. Some analysis of robustness is given in Section 5 and conclusions are
postponed until Section 6.

2 Background

2.1 Adaptive Feedforward Systems

An estimate Q of some signal y is to be constructed as a linear combination of the elements
of a regressor vector z(t) E RN, i.e.,

Estimated Signal
ij = W(yz(t) (2.1)

where w(t)  c RN is a parameter vector which is tuned in real-time using the adaptation
algorithm,
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Adaptation Algorithm
w = @’(p)[i(t)e(t)] (2.2)

Here, I’(p)  [”] denotes the multivariable LTI transfer function l?(s)”1 where I’(s) is any S1S0
LTI transfer function in the Laplace s operator (the differentiation operator p will replace
the Laplace operator s in all time-domain filtering expressions); the term e(t) ● RI is an
error signal; p > 0 is an adaptation gain; and the signal & is obtained by filtering the
regressor z through any stable filter F(p), i.e.,

Regressor Filtering
ii = F(p)[z] (2.3)

The notation F(p) [”] denotes the multivariable LTI transfer function F’(s)  s 1 with S1S0
filter F(s), acting on the indicated vector time domain signal.

Equations (2.1)-(2.3) taken together will be referred to as an adaptive feedforward  sys-
tem. Collectively, these equations define an important open-loop mapping from the error
signal e to the estimated output j. Because of its importance, the mapping from e to j
will be denoted by the special character M, i.e.,

j = 7-t[e] (2.4)

The special structure of ?i is depicted in Figure 2.1.

?-t
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...”

Figure 2.1: LTV operator j = ‘H[e] for adaptive system with regressor i, adaptation law
I’(s), and regressor filter I’(s)

REMARK 2.1 The definition of I’(s) is left intentionally general to include analysis of the
gradient algorithm (i.e., with the choice I’(s) = 1/s), the gradient algorithm with leakage
(i.e., I’(s) := l/(s+a);  02 O), proportional-plus-integral adaptation (i.e., l?(s) = kp+ki/s),
or arbitrary linear adaptation algorithms of the designer’s choosing. Adaptation laws which
are nonlinear or normalized (e.g., divided by the norm of the regressor), are not considered
here since they do not have an equivalent LTI representation I’(s). ■



REMARK 2.2 The use of the regressor filter F(s) is (2.3) allows the unified treatment
of many importrmt  adaptation algorithms including the well-known Filtered-X algorithm
from the signal processing literature [13], and the Augmented Error algorithm of Monopoli
(cf., [10]). ■

2.2 Confluence Matrices and Overparametrization

Let c(t) c R“ be a bounded piecewise continuous signal vector, and let there exist positive
constants @l, ~2, TO >0 such  that,

(2.5)

for all t z O. Any signal c(t) which satisfies these properties is said to be Persistently
Exciting (PE) with bounds {pi,  P2, T.} [8].

For the purpose of this paper, it will be assumed that the regressor z(t) E RN is linearly
related to such a PE signal c(t)  as follows,

x = xc(t) (2.6)

where X ~ RNxn.  It is also assumed that N z n in (2.6), so that X is a “tall” matrix and
the adaptive feedforward system is overparametrized.

DEFINITION 2.1 The matrix  X~X is defined as the confluence matrix associated
with a particular regressor x of the fomn (2. 6). m

The name “confluence matrix” has been chosen to reflect the fact that N signal channels
seen at the output of the tall matrix X are effectively combined into a smaller number of n
channels (n < N) when forming X~X. The confluence matrix will play an important role
in characterizing the convergence properties of the overparametrized adaptive system.

Unfortunately, if the system is overpsmmetrized  the PE condition is impossible to
satisfy. This will be shown by example.

EXAMPLE 2.1 For simplicity, consider the c~e where c is Periodic,  i.e.,

c(t) = [sin wOt, cos woi, sin tiot~ Cos ~0~) . . . , sin(rrw.t),  cos(muOt)]~ (2.7)

Letting To = 27r/uo  and using (2.7) one can calculate,

(2.8)

Hence, the PE condition (2.5) is satisfied with ~1 = ~z = TO/2.
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Because of the form of c(t) in (2.7), any regressor x = Xc(t) will be periodic with period
TO = 27r/u0.  One can check the PE condition by computing the autocorrelation mat~iz,

(2.9)

= :+XT (2.10)

It is seen that the autocorrelation  matrix is essentially the outer-product of the matrix X
with itself. Consequently, if the problem is overparametrized (i.e., N > n) the matrix X is
“tall”, and it is impossible for XXT to be positive definite i.e ., it is impossible to satisfy
the PE conditions. m

It is a common belief that along with the loss of PE, comes the loss of exponential
convergence. The main point of this paper is to show that this is not generally true, and in
fact the exponential convergence properties of the tracking error e (and the parameters on
a reduced subspace) do not depend on the outer  product  condition XX~ > 0, but rather
depend on the inner product condition XTX >0.

3 Regressor Reduction to PE

The next result shows that if the confluence matrix is positive definite, the adaptive feed-
forward operator If can always be reparametrized  to have a PE regressor without changing
its input-output properties.

THEOREM 3.1 (Regressor Reduction to PE) Let the confluence matriz associated
with the adaptive feedforward  system (’2.1)-(2. S) be pogitive  definite,

X T X  > 0 (3.1)

Then,

(i) The input-output properties of the LTV operator R from e to Q are invariant under
the change of variables,

q(t) = A-~ PXTz(t) (3.2)

p(t) = A-* PXTw(t) (3.3)

Here, q E R“ and p E R* are reduced-order regressor and parameter vectors, respectively,
and matrices P, A ~ R“xn are defined from the eigenvalue  decomposition of the confluence
matrix,

XTX =: PTAP (3.4)

A = diag{~l,...,~~}  >0 (3.5)

where PT = P-l, and it is assumed that the eigenvalues  are ordered as Al ~ . . . ~ An >0.
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(ii) The reduced-order regregaor  Q E Rn ig PE with the boundg,

(3.6)

for all t >0, wheTe  /?I,@z,  To aTe defined by the PE condition (2.5) for c(t).

PROOF:
Proof of (i) The proof follows simply by the superposition and scaling properties of linear
operators. As such, it can be proved graphically. Consider the sequence of block diagram
rearrangements shown in Figure 3.1. Specifically, Figure 3.1 Part a. shows the initial
adaptive system with overparametrized regressor z; Part b. shows the matrix X pushed
through several scalar matrix blocks of the diagram; Part c. replaces the confluence matrix
by its eigenvalue  decomposition X~X = PTAP; Part d. pushes the matrix factor A ~P
back through several scalar matrix blocks. The resulting block diagr~ is driven by the
regressor ~ which related to c by the nonsingular transformation q = A z Pc, and hence is
PE.

Proof of (ii) Define,

I
t+T.

M= q(T) Tf(T)dTt
Substituting q = A*Pc into (3.7), gives

(3.7)

(3.8)

Using the PE property of c(t) in (2.5) and (3.5) gives,

G(M) < /?2A1 (3.9)

c(M) z ~1 ~. (3.10)

which is equivalent to (3.6) as desired. ■

In order to use the result of Theorem 3.1, the overparametrized regressor z E RN must
satisfy the decomposition z(t) = XICl(t) for some matrix Xl ● RNxn, and some PE signal
vector c1 (S W. Fortunately, in many applications such a decomposition is straightforward
tc) find. Consider the next example.

EXAMPLE 3.1 [Harmonic Regressor] It is common for the regressor z to have a harmonic
form, i.e., its elements are composed of linear combinations of m sinusoidal frequencies
{Wi}~l.  For this regressor, the signal c1 can be chosen of length 2m having elements,

cl(t) = [sinwlt, cosult, . . ..sinu~t.  cosw~t]T E R*m (3.11)

This construction guarantees the existence of a matrix XI ~ R2m in the desired decompo-
sition z = Xl cl(t). ■
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Figure 3.1: Proof of Theorem 3.1 by Block diagra.prearrangements
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REMARK 3.1 When the regressor has the harmonic form z = Xc for c of the form
(3.11), it sometimes turns out that the mapping ?t is puTely  Linear Time-Invariant (LTI,).
This LTI property considerably simplifies the analysis, and lies at the heart of Glover’s
approach in [7]. It has been found recently [4] that this LTI property occurs if and only if
the con$?uence  matriz has a pairwise  diagonal stwcture,  i.e.,

XTX = D2 (3.12)

where,
D 2 = diag[d~,  d~, d~, d~,..., d~, d~] (3.13)

The input-output properties of M play a critical role in determining the convergence
properties of the tracking error e in closed-loop. The result of Theorem 3.1 is impor-
tant because it shows that the input-output properties of the operator H (even over-
parametrized) are identical to one which is reparametrized to have a (reduced-order) PE
regressor. Given such a PE regressor, many proofs of exponential stability exist in the
literature (cf., [8] [10] [11]). As applied to the present case, these proofs ensure exponential
convergence of the tracking error (and the parameters on a reduced subspace) in closed-loop.
The adaptive gradient algorithm is chosen in the next section as a simple and representative
algorithm to examine these exponential convergence properties in more detail.

4 Exponential Convergence

4.1 Adaptive Gradient Algorithm

Let the y(t)  ~ Rl and z(t) ~ R‘, be known signals and assume there exists a constant
parameter vector w“ ~ RN such that,

y(i) = woTz(t) (4.1)

for all t >0. Uniqueness of W“ is not required (i.e., the system can be overparametrized).
An estimate ~ of y is constructed as,

j== tfJ(t)TZ(t) (4.2)

where w(t)  is tuned in real-time using the adaptive gradient algorithm [10] (i.e., set I?(s) =
1/s in (2.2) and I’(s) = 1 in (2.3) ).,

w = pl(t)e(i) (4.3)

with adaptation gain p > 0. The tracking error is defined as,

e(t) = y(i) – j(t) (4.4)

8



and the parameter error is defined as,

(j(t)  = w“ - w(t) (4.5)

Using (4.1)(4.2)(4.4)(4.5), the tracking and parameter errors can be related as follows,

e = +Tz(t) (4.6)

Assuming that the true parameter w“ does not vary with time, (i.e., tip = O), it follows
from (4.3)(4.5) that,

~ = ti” - w = -pxe = -pxx’~ (4.7)

This equation characterizes the propagation of the parameter error.

4.2 Exponential Convergence Properties

It is convenient at this point to review a well-known stability argument. Define the Lya-
punov function candidate,

v = ;@~ (4.8)

Taking the derivative of (4.8) and using (4.1)-(4.7) yields,

This proves that @ remains bounded. If z is bounded,  then from (4.6) the error e remains
bounded. Furthermore, if ; is bounded, then V is bounded, V is uniformly continuous,
and Barbalat’s  lemma ([10], pg. 85, and 276), can be applied to ensure that lim~+~ e = 0.
This well known argument ensures that the error converges to zero as desired.

While the above argument ensures that e converges to zero, it does not indicate how
just it converges, Additional conditions such as persistent excitation are typically imposed
which ensure exponential convergence of e to zero.

Persistent excitation conditions in adaptive algorithms have been studied by many re-
searchers. Early results can be found in Astrom and Bohlin [I] where the PE condition is
expressed in terms of positive definiteness of the autocorrelation  function formed from the
regressor. Subsequently, Bitmead and Anderson [6] proved that parameter convergence is
exponential when PE conditions are satisfied in the adaptive gradient algorithm and the
normalized adaptive gradient algorithms. Explicit upper and lower bounds on the expo-
nential response can be found in [12]. A general discussion of the PE condition is given in
[5] and an effort to unify many definitions can be found in [14].

As an example, consider the case without overparametrization (i.e., N = n), so that
z(t) c R* is bounded and PE satisfying, say,

Ilz(t)ll <Z< 00; forallt?O (4,10)
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~l~s ~’+’+)m~~ ~~,~ (4.11)
t

for some al, az, 6>0. Then it is well known (cf., [10][11] [8]), that the error e converges
exponentially. Specifically, there exist constants p. 20, CI >0 such that,

Iel < pee-m’ (4.12)

The precise expression for a is given in Lemma A.1 of Appendix A as,

a
( )

~ in –~
=  26 l–a~

(4.13)

l;
( )— “  114(0)11‘ 0 =  
l–oi3

(4.14)

2/m’,
‘3= (1 + pz,fi),

(4.15)

The convergence rate a in (4.13) is a function of p through the expression (4.15). For small
~ the rate can be approximated by,

The fastest convergence rate
tally, the condition da/dp  =

~ ~ ~L~~

6
(4.16)

is found by optimizing a in (4,13) with respect to p. Specifi-
0 can be solved to give the optimal gain as,

Substituting (4.17) into (4.13) gives,

“*=*+-M

(4.17)

(4.18)

It is seen that em the optimized rate a“ improves monotonically with the ratio oq/a2.  This
ratio is precisely the reciprocal condition number of the autocorrelation  matrix (4.11), and
motivates keeping this condition number as close to unity as possible for fast convergence
(assuming it is optimally tuned with p“).

Exponential convergence for the overparametrized adaptive gradient algorithm is ex-
amined next.
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THEOREM 4.1 (Overparametrized Adaptive Gradient) Assume  there ezists a w“ ~
RN such that (4.1) holds for all t z (1, and that the adaptive gradient algorithm (4.2)-(4.7)
is used to tune w, giving the following error system,

e = ~TX (4.19)

(j= -pzxT~ (4.20)

Let c(t) G Rn be a bounded piecewise continuous signal vector which is PE, i.e., let there
exist positive constants  /31, /32, To >0 such that,

t+ToPl”q C(T) C(T)TtiT  < @2 . 1; for all t ~ O (4.21)

[Ic(t)[[ <Z<cm; fora/lt>O— — (4.22)

Let the

where X ~

regressor x(t) E RN be

RNxn and N 2 n (i. e.,
matrix be positive definite,

linearly related to

x = xc(t)

the system can be

X T X  > 0

the PE signal c(t) a.q follows,

(4.23)

overpaTametrized).  Let the confluence

(4.24)

and let the eigenvalue decomposition of the confluence matrix be given as,

XTX = PTAP (4.25)

A = diag{~l,...,  ~~} >0 (4.26)

wheTe PT == P-l, and Al ~ . . . ~ & > 0 .

Then,

(i) The error system (4.19)(4.20)  can be written equivalently as the reduced system,

e = TTq (4.27)

i = — /LQ qTr (4.28)

where the reduced regressor q ~ Rn and parameter emoT  T E Rn aTe given,  respectively, by,

q = A+ Pc(t) (4.29)

r z A-~px’T~ (4.30)

(ii) The reduced Tegressor  q E Rn is PE with the bounds,

(4.31)
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jOT all t ~ o.

(iii) The tracking error e and reduced parameter error T converge to zero exponentially
as,

Ilrl] s pee-a’ (4.32)

where,
1 1

( )
. — i n  –—

a –  2T0 1–CY3
(4.34)

l;()Po=  —
1–CX3

. \\r(0)ll (4.35)

(4.36)

Letting p he sufficiently small  (i. e., such that p << I/(/?a~ITO@))j  give%

a z p@l&/TO (4.37)

po ~ (1 + ppl~n)llr(o)ll (4.38)

PROOF:

Proof of (i): Using the transformed vectors q and r, the error equation (4.19) can be
written as follows,

e =  #’z = (y2c(i) (4.39)

=  cjTA’PTA-:A:Pc(t) (4.40)

=  rT?’ (4.41)

which is (4.27) as desired. Likewise, for the adaptation law (4.20) one has,

d =  –WT4  =  -’@ccT~T4J (4,42)

Multiplying both sides of (4.42) on the left by A-~ PX’T gives,

= ++ PPTAPCCTX7-4 (4.44)

= –PA i pccT~T#) (4,45)

= _pAipccTpW&WT4 (4.46)
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Substituting (4.29) and (4.30) into both sides of (4.46) gives,

+ = –pqqTr

which is (4.28) as desired.

Proof of (ii): Identical to Proof of(ii)of  Theorem 3.1.

Proof of(iii) By Part(ii) thereduced  regressor qin(4.29)is
from Lemma A. 1 of Appendix A that the reduced error

(4.47)

persistently exciting. It follows
system (4.27)(4.28) converges

exponentially. In light of the PE bounds in (4.31), Lemma A.1 can be applied with al =

/?l&, ~z = PZAI, 6 = TO and z = ~!z to give results (4.32)-(4.38) as desired. m

4.3 Discussion

Intuitively, the persistent excitation conditions me eliminated in Theorem 3.1 bY avoiding
the need for convergence of the full parameter vector w in the proof. Rather, the “degree”
to which the given regressor z is persistently exciting is indicated by the size n of the
vector c(t). The parameter error vector ~ is transformed to become the smaller vector
r == A-~ PX~# where r E R“ is defined on a subspace which is excited persistently. Since
the regressor q associated with r is persistently exciting, the reduced error vector r converges
exponentially, which from (4, 27) ensures exponential convergence of e.

The exponential rate of convergence will be examined more closely. If one constructs
the idezd  regressor as z(t) = c(t) then the regressor is pE with p~arneters  {@l,  P2, TO} ~d

one would achieve an optimal exponential convergence of (set (al = ~1, CEZ = &., d = TO in
(4,18)),

(4.48)

However, if the regressor is overparametrized as z = Xc(t),  then Theorem 4.1 part (ii)
indicates that the PE parameters of the equivalent reduced-order regressor q are degraded
to ~1 A., BZAI, TO, This modifies the optimal convergence rate to,

1 ( 1
a“ =  —ln  ——-

26 l–T~.g.~”
)

(4.49)

i.e., the rate is degraded by (a monotonic function of) the ratio ~~/A1. This ratio is precisely
the reciprocal of the condition number of the confluence matrix XTX,  denoted as,

In words then, the optimal
system degrades (compared
of the confidence matrix.

A Al/c(xTX) = ~ (4.50)
n

exponential convergence rate foT an OVeTpUTUmeiTiZed  adaptive
to the full PE case) monotonically with the condition number
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The reader is warned that this condition number can be quite large. ln jaci,  most
of the bad experiences that researchers have with sluggish convergence of overparametrized
adaptive systems can be traced  to this quantity. The usual tendency is to blame over-
parmnetrization and lack of PE. However, the main point to be made here is that, on the
contrary, overpawnetrized  systems have exponential convergence just like full l’E systems>
and can provide good performance if care is taken to ensure that the condition number
(4.50) is well behaved.

5 Robustness Properties

Generally speaking, a full PE condition contributes significantly to the overall robustness of
the adaptive system due to exponential convergence of the entire parameter vector. Unfor-
tunately, in the case of the weakened PE condition the parameters converge exponentially
only on a reduced subspace and one cannot expect the same level of robustness, Neverthe-
less, it is shc]wn  that a certain level of robustness is retained, in particular, those robustness
properties that depend solely on the input/output properties of the adaptive algorithm.

If a bounded disturbance d is added to the output y in (4.1), then the error system
(4.19)(4,20) becomes,

e=~Tx+d (5.1)

cj = – / L X XT (j – pxd (5.2)

Using the identities in Theorem 4.1, the reduced error system can be calculated as,

c=rTq+d (5.3)

Since the reduced regressor q is PE, the linear time-varying equation (5.4) is exponentially
stable, and it can be shown using standard results (cf., [8], Chapter 9) that the signals e
and r will remain bounded. Hence the exponential convergence property ensured by the
partial PE condition is robust in the sense that it ensures boundedness  of rdl signals in the
face of bounded output disturbances. It is emphasized that the leakage modification (or
any other modification) was not required in this case to establish boundedness.

On the other hand, a loss of robustness may occur if in addition to the output distur-
bance, one adds a bounded disturbance to the ~egressor  x. In this scenario, the system
might become excited over the parameter subspace which is not PE, leading to a loss of uni-
form asymptotic stability (u.a.s.)  in the homogeneous part of (5.1)(5.2) (cf., [8], pg. 636).
When u.a.s. is lost, counterexamples to stability exist with consequences of unbounded
parameter drift (cf., [8], pg. 546). In this case it may be possible (although not yet proved)
to recover exponential convergence if the regressor disturbance is in the form of a transient
which decays sufficiently fast (e.g., exponentially). This case is common in practice due to
transient effects in feedforward signals, and remains to be amdyzed further.
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6 Conclusions

The main results of the paper show that if the confluence matrix is positive definite the
adaptive feedforward operator ?-l from the error e to the estimate ~ is input-output equiva-
lent to an adaptive system with a PE regressor. This implies that tracking error convergence
is exponentizd  for a large class of overparametrized adaptive feedforward systems, Explicit
bounds on the convergence rate is given for purposes of systematic optimization and design.

The reader is warned, however, that the weakened PE condition does not enjoy all
the robustness properties of full PE, and does not ensure parameter convergence over the
entire space. It would also be prudent to restrict its application to adaptive feedforwud
rather than feedback applications, and especially applications where performance is judged
by mnvergence  of the tracking error rather than any requirement for convergence of the
parameters,
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A  A P P E N D I X  A

LEMMA 1 (Sasihy  and Bod90n  /11)) Consider the error equation,

e = fi”x ( A l )

& = -p&~ (A.2)

where ~(t),  x(t) E R“. Let x be a bounded piecewise continuous function of t such that,

I[x(t)ll <Z< co; forallt>  O— (A.3)

and let there exist constants al, a2, 6> 0 such that the following PE condition is satisfied,

(A.4)

Then the system (A.l)(A.2)  is globally exponentially stable, i.e.,

11411< pOe-a’ (A.5)

where,
1 1

( )
~ . — l n  —-—

26 1–CY3
(A.?)
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1*()PO= —

l–cU3 “ 114(0)11 (A.8)

2pcx]
a’= (1+ pa,fi)’

(A.9)

Letting p be sufficiently small (i.e., such that p << l/(a2@)), gives,

o! = pcY1/6’ (A,1O)

po =’ (1 +W1)IM(0)II ( A l l )

PROOF: The proof follows directly from the development in Sastry and Bodson [11] pg.
73-75 (see in particular Theorem 2.5.3) specialized to the gradient adaptation algorithm
(A.l)(A.2).
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